Glutamine Supplementation Alleviates Vasculopathy and Corrects Metabolic Profile in an In Vivo Model of Endothelial Cell Dysfunction
نویسندگان
چکیده
Endothelial Cell Dysfunction (ECD) is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA), we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN), that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction. To test this hypothesis, mice with chronic L-NMMA-induced ECD were co-treated with GLN at different concentrations for 2 months. Results confirmed that L-NMMA led to a defect in acetylcholine-induced relaxation of aortic rings that was dose-dependently prevented by GLN. In caveolin-1 transgenic mice characterized by eNOS inactivation, L-NMMA further impaired vasorelaxation which was partially rescued by GLN co-treatment. Pro-inflammatory profile induced by L-NMMA was blunted in mice co-treated with GLN. Using an LC/MS platform for metabolite profiling, we sought to identify metabolic perturbations associated with ECD and offset by GLN supplementation. 3453 plasma molecules could be detected with 100% frequency in mice from at least one treatment group. Among these, 37 were found to be differentially expressed in a 4-way comparison of control vs. LNMMA both with and without GLN. One of such molecules, hippuric acid, an "uremic toxin" was found to be elevated in our non-uremic mice receiving L-NMMA, but normalized by treatment with GLN. Ex vivo analysis of hippuric acid effects on vasomotion demonstrated that it significantly reduced acetylcholine-induced vasorelaxation of vascular rings. In conclusion, functional and metabolic profiling of animals with early ECD revealed macrovasculopathy and that supplementation GLN is capable of improving vascular function. Metabolomic analyses reveal elevation of hippuric acid, which may further exacerbate vasculopathy even before the development of uremia.
منابع مشابه
Dietary ω-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease.
The anemia of sickle cell disease is associated with a severe inflammatory vasculopathy and endothelial dysfunction, which leads to painful and life-threatening clinical complications. Growing evidence supports the anti-inflammatory properties of ω-3 fatty acids in clinical models of endothelial dysfunction. Promising but limited studies show potential therapeutic effects of ω-3 fatty acid supp...
متن کاملEndothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases
متن کامل
Distinct effects of royal jelly on human endothelial cells under high glucose condition
To assess different effects of royal Jelly in protecting the human endothelial cells from high glucose level, human umbilical vein endothelial cells were exposed to various concentrations of royal jelly, from 0.625 to 10 mg/ml, at the presence of 5 and 30 mM glucose contents over a course of 72 h. In addition to cell viability assessment by conventional MTT assay, we also analyzed the feature o...
متن کاملDistinct effects of royal jelly on human endothelial cells under high glucose condition
To assess different effects of royal Jelly in protecting the human endothelial cells from high glucose level, human umbilical vein endothelial cells were exposed to various concentrations of royal jelly, from 0.625 to 10 mg/ml, at the presence of 5 and 30 mM glucose contents over a course of 72 h. In addition to cell viability assessment by conventional MTT assay, we also analyzed the feature o...
متن کاملEVALUATION OF METABOLIC PROFILE OF PLASMA AMINO ACIDS IN DIABETIC PATIENTS WITH CARDIOVASCULAR DISEASES
Background: Diabetes mellitus is one of the most common endocrine diseases. Cardiovascular disease (CVD) is one of the leading causes of death in patients with type 2 diabetes. The aim of this study was to investigate the metabolic profile of plasma amino acids in diabetic patients with cardiovascular disease. Methods: The present study is a descriptive-analytical cross-sectional study on 140 ...
متن کامل